7 research outputs found

    Large carnivore range expansion in Iberia in relation to different scenarios of permeability of human‐dominated landscapes

    Get PDF
    Aim Large carnivores are currently recolonizing parts of their historical ranges in Europe after centuries of persecution and habitat loss. Understanding the mechanisms driving these recolonizations is important for proactive conservation planning. Using the brown bear (Ursus arctos) and the Iberian lynx (Lynx pardinus) as examples, we explore where and when large carnivores are likely to expand into human-dominated landscapes and how varying levels of resistance due to human pressure might impact this recolonization process. Location Iberian Peninsula. Methods We used ensembles of species distribution models to relate species occurrence data to climate, topography and satellite-based land-cover predictors at a 10 km spatial resolution. Resulting predictions of suitable habitat areas were fed into a dispersal model to simulate range expansion over the 10 time-steps for different human pressure scenarios. Finally, we overlaid predictions with protected areas to highlight areas that are likely key for future connectivity, but where human pressures might hamper dispersal. Results We found widespread suitable habitat for both species (bear: 30,000 km2, lynx: 170,000 km2), yet human pressure limits potential range expansions. For brown bears, core habitats between the Cantabrian and Pyrenean populations remained unconnected despite suitable habitat in between. For lynx, we predicted higher range expansion potential, although high human pressures in southern coastal Spain negatively affected expansion potential. Main conclusions Our results highlight that the recolonization potential of brown bears and lynx in the Iberian Peninsula is likely more constrained by lower permeability of landscapes due to human pressure than by habitat availability, a situation likely emblematic for large carnivores in many parts of the world. More generally, our approach provides a simple tool for conservation planners and managers to identify where range expansion is likely to occur and where proactively managing to allow large carnivores to safely disperse through human-dominated landscapes can contribute to viable large carnivore populations.Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Peer Reviewe

    Arctic shrub expansion revealed by Landsat-derived multitemporal vegetation cover fractions in the Western Canadian Arctic

    Get PDF
    Warming induced shifts in tundra vegetation composition and structure, including circumpolar expansion of shrubs, modifies ecosystem structure and functioning with potentially global consequences due to feedback mechanisms between vegetation and climate. Satellite-derived vegetation indices indicate widespread greening of the surface, often associated with regional evidence of shrub expansion obtained from long-term ecological monitoring and repeated orthophotos. However, explicitly quantifying shrub expansion across large scales using satellite observations requires characterising the fine-scale mosaic of Arctic vegetation types beyond index-based approaches. Although previous studies have illustrated the potential of estimating fractional cover of various Plant Functional Types (PFTs) from satellite imagery, limited availability of reference data across space and time has constrained deriving fraction cover time series capable of detecting shrub expansion. We applied regression-based unmixing using synthetic training data to build multitemporal machine learning models in order to estimate fractional cover of shrubs and other surface components in the Mackenzie Delta Region for six time intervals between 1984 and 2020. We trained Kernel Ridge Regression (KRR) and Random Forest Regression (RFR) models using Landsat-derived spectral-temporal-metrics and synthetic training data generated from pure class spectra obtained directly from the imagery. Independent validation using very-high-resolution imagery suggested that KRR outperforms RFR, estimating shrub cover with a MAE of 10.6 and remaining surface components with MAEs between 3.0 and 11.2. Canopy-forming shrubs were well modelled across all cover densities, coniferous tree cover tended to be overestimated and differentiating between herbaceous and lichen cover was challenging. Shrub cover expanded by on average + 2.2 per decade for the entire study area and + 4.2 per decade within the low Arctic tundra, while relative changes were strongest in the northernmost regions. In conjunction with shrub expansion, we observed herbaceous plant and lichen cover decline. Our results corroborate the perception of the replacement and homogenisation of Arctic vegetation communities facilitated by the competitive advantage of shrub species under a warming climate. The proposed method allows for multidecadal quantitative estimates of fractional cover at 30 m resolution, initiating new opportunities for mapping past and present fractional cover of tundra PFTs and can help advance our understanding of Arctic shrub expansion within the vast and heterogeneous tundra biome

    Mapping buried paleogeographical features of the Nile Delta (Egypt) using the Landsat archive

    Get PDF
    The contribution highlights the use of Landsat spectral-temporal metrics (STMs) for the detection of surface anomalies that are potentially related to buried near-surface paleogeomorphological deposits in the Nile Delta (Egypt), in particular for a buried river branch close to Buto. The processing was completed in the Google Earth Engine (GEE) for the entire Nile Delta and for selected seasons of the year (summer/winter) using Landsat data from 1985 to 2019. We derived the STMs of the tasseled cap transformation (TC), the Normalized Difference Wetness Index (NDWI), and the Normalized Difference Vegetation Index (NDVI). These features were compared to historical topographic maps of the Survey of Egypt, CORONA imagery, the digital elevation model of the TanDEM-X mission, and modern high-resolution satellite imagery. The results suggest that the extent of channels is best revealed when differencing the median NDWI between summer (July/August) and winter (January/February) seasons (1NDWI). The observed difference is likely due to lower soil/plant moisture during summer, which is potentially caused by coarser-grained deposits and the morphology of the former levee. Similar anomalies were found in the immediate surroundings of several Pleistocene sand hills (“geziras”) and settlement mounds (“tells”) of the eastern delta, which allowed some mapping of the potential near-surface continuation. Such anomalies were not observed for the surroundings of tells of the western Nile Delta. Additional linear and meandering 1NDWI anomalies were found in the eastern Nile Delta in the immediate surroundings of the ancient site of Bubastis (Tell Basta), as well as several kilometers north of Zagazig. These anomalies might indicate former courses of Nile river branches. However, the 1NDWI does not provide an unambiguous delineation

    Revealing Spatio-Temporal Dynamics of Arctic Shrub Expansion: Utilizing Vegetation Cover Fractions from Landsat Time Series

    No full text
    Warming induced rapid and extensive alterations of tundra ecosystem form and functioning, including an increased abundance of shrub species, entails profound implications on pan-Arctic and global scale. In order to disentangle carbon and energy fluxes and assess climate feedbacks, we require a better understanding of tundra vegetation composition and structure in general, and of shrub expansion in particular. Remote sensing provides the unique opportunity of assessing ecological change at high spatial and temporal detail within the vast and remote landscapes of the Arctic tundra biome. Yet current satellite-based approaches are often restrained by scarce field observations, constraining the spatio-temporal dimensions that are needed to assess shrubification processes. Here, I estimated the fractional cover of four major Plant Functional Types (PFTs), including shrubs, and other land cover classes using multi-seasonal image features derived from Landsat acquisitions within the greater Mackenzie Delta region for 1984–1988, 1999–2002 and 2017–2020. I deployed regression-based unmixing using Kernel Ridge Regression (KRR) and Random Forest Regression (RFR) in combination with multi-temporal synthetic training data generated from pure endmember spectra obtained directly from the imagery. The method facilitates capturing the fine-scale heterogeneous nature of Arctic vegetation types across space and time, acknowledging differences between algorithm choice and target classes. Independent validation based on very-high-resolution airborne and drone acquisitions suggests that KRR outperformed RFR with a good prediction accuracy for shrubs (MAE = 11.7 %) and other land cover classes (MAEs = 1.0–11.9 %). The multitemporal predictions revealed intense shrub expansion of on average 2.3 –4.7 % per decade across much of the study area. The spatio-temporal patterns suggest that the mechanisms and hotspots of shrubification have shifted from an infilling of existing patches in the shrub dominated tundra, towards a latitudinal expansion into low-statured tundra communities in recent decades. Simultaneously, I found a widespread decline in herbaceous vegetation cover, partly in conjunction with shrub expansion, corroborating evidence and projections of the replacement and homogenisation of vegetation communities facilitated by the competitive advantage of certain shrub species under a warming climate. At large, the method applied, and the maps generated, initiate new opportunities for mapping past and present land cover fractions and advance our spatio-temporal understanding of Arctic shrub expansion within the vast and heterogeneous tundra biome

    Mapping Crop Types and Cropping Systems in Nigeria with Sentinel-2 Imagery

    Get PDF
    Reliable crop type maps from satellite data are an essential prerequisite for quantifying crop growth, health, and yields. However, such maps do not exist for most parts of Africa, where smallholder farming is the dominant system. Prevalent cloud cover, small farm sizes, and mixed cropping systems pose substantial challenges when creating crop type maps for sub-Saharan Africa. In this study, we provide a mapping scheme based on freely available Sentinel-2A/B (S2) time series and very high-resolution SkySat data to map the main crops—maize and potato—and intercropping systems including these two crops on the Jos Plateau, Nigeria. We analyzed the spectral-temporal behavior of mixed crop classes to improve our understanding of inter-class spectral mixing. Building on the Framework for Operational Radiometric Correction for Environmental monitoring (FORCE), we preprocessed S2 time series and derived spectral-temporal metrics from S2 spectral bands for the main temporal cropping windows. These STMs were used as input features in a hierarchical random forest classification. Our results provide the first wall-to-wall crop type map for this key agricultural region of Nigeria. Our cropland identification had an overall accuracy of 84%, while the crop type map achieved an average accuracy of 72% for the five relevant crop classes. Our crop type map shows distinctive regional variations in the distribution of crop types. Maize is the dominant crop, followed by mixed cropping systems, including maize–cereals and potato–maize cropping; potato was found to be the least prevalent class. Plot analyses based on a sample of 1166 fields revealed largely homogeneous mapping patterns, demonstrating the effectiveness of our classification system also for intercropped classes, which are temporally and spatially highly heterogeneous. Moreover, we found that small field sizes were dominant in all crop types, regardless of whether or not intercropping was used. Maize–legume and maize exhibited the largest plots, with an area of up to 3 ha and slightly more than 10 ha, respectively; potato was mainly cultivated on fields smaller than 0.5 ha and only a few plots were larger than 1 ha. Besides providing the first spatially explicit map of cropping practices in the core production area of the Jos Plateau, Nigeria, the study also offers guidance for the creation of crop type maps for smallholder-dominated systems with intercropping. Critical temporal windows for crop type differentiation will enable the creation of mapping approaches in support of future smart agricultural practices for aspects such as food security, early warning systems, policies, and extension services.Peer Reviewe

    Assessing Spatiotemporal Variations of Landsat Land Surface Temperature and Multispectral Indices in the Arctic Mackenzie Delta Region between 1985 and 2018

    No full text
    Air temperatures in the Arctic have increased substantially over the last decades, which has extensively altered the properties of the land surface. Capturing the state and dynamics of Land Surface Temperatures (LSTs) at high spatial detail is of high interest as LST is dependent on a variety of surficial properties and characterizes the land–atmosphere exchange of energy. Accordingly, this study analyses the influence of different physical surface properties on the long-term mean of the summer LST in the Arctic Mackenzie Delta Region (MDR) using Landsat 30 m-resolution imagery between 1985 and 2018 by taking advantage of the cloud computing capabilities of the Google Earth Engine. Multispectral indices, including the Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI) and Tasseled Cap greenness (TCG), brightness (TCB), and wetness (TCW) as well as topographic features derived from the TanDEM-X digital elevation model are used in correlation and multiple linear regression analyses to reveal their influence on the LST. Furthermore, surface alteration trends of the LST, NDVI, and NDWI are revealed using the Theil-Sen (T-S) regression method. The results indicate that the mean summer LST appears to be mostly influenced by the topographic exposition as well as the prevalent moisture regime where higher evapotranspiration rates increase the latent heat flux and cause a cooling of the surface, as the variance is best explained by the TCW and northness of the terrain. However, fairly diverse model outcomes for different regions of the MDR (R2 from 0.31 to 0.74 and RMSE from 0.51 °C to 1.73 °C) highlight the heterogeneity of the landscape in terms of influential factors and suggests accounting for a broad spectrum of different factors when modeling mean LSTs. The T-S analysis revealed large-scale wetting and greening trends with a mean decadal increase of the NDVI/NDWI of approximately +0.03 between 1985 and 2018, which was mostly accompanied by a cooling of the land surface given the inverse relationship between mean LSTs and vegetation and moisture conditions. Disturbance through wildfires intensifies the surface alterations locally and lead to significantly cooler LSTs in the long-term compared to the undisturbed surroundings
    corecore